Improvements in mucopolysaccharidosis I mice after adult retroviral vector-mediated gene therapy with immunomodulation.

نویسندگان

  • Xiucui Ma
  • Yuli Liu
  • Mindy Tittiger
  • Anne Hennig
  • Attila Kovacs
  • Sarah Popelka
  • Baomei Wang
  • Ramin Herati
  • Mark Bigg
  • Katherine P Ponder
چکیده

Mucopolysaccharidosis I (MPS I) is caused by deficient alpha-L-iduronidase (IDUA) activity and results in the accumulation of glycosaminoglycans and multisystemic disease. Gene therapy could program cells to secrete mannose 6-phosphate-modified IDUA, and enzyme in blood could be taken up by other cells. Neonatal retroviral vector (RV)-mediated gene therapy has been shown to reduce the manifestations of murine MPS I; however, intravenous injection of RV into adults was ineffective owing to a cytotoxic T lymphocyte (CTL) response against transduced cells. In this study, prolonged inhibition of CD28 signaling with CTLA4-Ig, or transient administration of CTLA4-Ig with an anti-CD40 ligand antibody or with an anti-CD4 antibody, resulted in stable expression in most mice that received RV as adults. Mice with stable expression had 81 +/- 41U/ml IDUA activity in serum. This resulted in reductions in bone disease, improvements in hearing and vision, and reductions in biochemical and pathological evidence of lysosomal storage in most organs. Improvements in brain were likely due to diffusion of enzyme from blood. However, aortic disease was refractory to treatment. This demonstrates that most manifestations of MPS I can be prevented using adult gene therapy if an immune response is blocked.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Self-inactivating γ-Retroviral Vector Reduces Manifestations of Mucopolysaccharidosis I in Mice.

Mucopolysaccharidosis I (MPS I) is a lysosomal storage disease due to deficiency in α-L-iduronidase (IDUA) that results in accumulation of glycosaminoglycans (GAGs) throughout the body, causing numerous clinical defects. Intravenous administration of a γ-retroviral vector (γ-RV) with an intact long terminal repeat (LTR) reduced the clinical manifestations of MPS I, but could cause insertional m...

متن کامل

Improved retroviral vector design results in sustained expression after adult gene therapy in mucopolysaccharidosis I mice.

BACKGROUND Mucopolysaccharidosis I (MPS I) is a lysosomal storage disease due to alpha-L-iduronidase (IDUA) deficiency that results in the accumulation of glycosaminoglycans (GAG). Gene therapy can reduce most clinical manifestations, but mice that receive transfer as adults lose expression unless they receive immunosuppression. Increasing liver specificity of transgene expression has reduced i...

متن کامل

Mucopolysaccharidosis I cats mount a cytotoxic T lymphocyte response after neonatal gene therapy that can be blocked with CTLA4-Ig.

Although gene therapy has reduced manifestations of genetic diseases, immune responses can abrogate the effect. One approach to inducing tolerance is to perform gene transfer in newborns when the immune system is immature. We demonstrate here that the dose of retroviral vector (RV) is important in mice, as mucopolysaccharidosis I (MPS I) mice that received neonatal intravenous gene therapy with...

متن کامل

Liver-directed neonatal gene therapy prevents cardiac, bone, ear, and eye disease in mucopolysaccharidosis I mice.

Mucopolysaccharidosis I (MPS I) due to deficient alpha-L-iduronidase (IDUA) activity results in accumulation of glycosaminoglycans in many cells. Gene therapy could program liver to secrete enzyme with mannose 6-phosphate (M6P), and enzyme in blood could be taken up by other cells via the M6P receptor. Newborn MPS I mice were injected with 10(9) (high dose) or 10(8) (low dose) transducing units...

متن کامل

Radiographic evaluation of bones and joints in mucopolysaccharidosis I and VII dogs after neonatal gene therapy.

Mucopolysaccharidosis I (MPS I) and MPS VII are due to deficient activity of the glycosaminoglycan-degrading lysosomal enzymes alpha-L-iduronidase and beta-glucuronidase, respectively, and result in abnormal bones and joints. Here, the severity of skeletal disease in MPS I and MPS VII dogs and the effects of neonatal gene therapy were evaluated. For untreated MPS VII dogs, the lengths of the se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular therapy : the journal of the American Society of Gene Therapy

دوره 15 5  شماره 

صفحات  -

تاریخ انتشار 2007